Chapter 1

Cobordism group (),

Two closed orientable n-manifolds M and N are considered to be the same
modulo the cobordism relation if there disjoint union is the boundary of an-
other manifold. That’s way studying cobordism theory may be a good way
to classify manifolds, and by asking what this have to do with the homology
of manifolds. In this projet we will study the case of three dimensional man-
ifolds but before that we will talk the cases n =0, 1, 2.

The main idea in this presentation is to show every closed orientable 3-
manifold is the boundary of some orientable 4-manifold by using Dehn surgery
on the 3-sphere.

1.1 Preliminaries

Definition 1.1.1. An n-manifold M will be defined to be a metric space
which may be covered by open sets, each of which is homeomorphic with R™
or the half-space Ry x R}

M is said to be closed if it is compact and OM = 0.

Definition 1.1.2. A handlebody of genus g is the result of attaching g dis-
joint 1-handles D? x [—1,1] to a 3-ball B® by sewing the parts D* x £1 to
2g disjoint disks on the boundary of B® in such a way that the result is an
orientable 3-manifold with boundary.

Remark 1.1.1. Two handlebodies of the same genus are homeomorphic.
The boundary of a handlebody of genus g is a closed orientable 2-manifold of
the same genus.( see Rolfsen page 239).

Definition 1.1.3. A solid torus L is a space homeomorphic with S' x D?
. A framing is a specified homeomorphism f : S' x D* — L. By meridian



we mean a simple closed curve a = f(1x0D?) and by longitude B = f(S'x1).

Definition 1.1.4. Let L and L’ be handlebodies of the same genus, g , and
let f: OL" — OL be a homeomorphism. Let M = LU, L', M is a closed
orientable 3-manifold and the triple (L,L’, f) is called Heegaard diagram or
Heegaard splitting of genus g for M.

Theorem 1.1.1. Every closed orientable connected 3-manifold has a Hee-
gaard diagram, and hence a well-defined genus.

Proof. See Rolfsen’s book pages 240-241. m

Definition 1.1.5. Let M be a three dimensional manifold (with boundary)
such that there is:

1. alink L =K, U...UK;, of simple closed curves in the interior of M,
2. disjoint tubular neighborhood H; of K; in the interior of M,

3. a specified simple closed curve «y; in OH; For all i.

Let
M =M-(Hu..uH)JHU. . UH,).
f
where f is a union of homeomorphisms f; : 0H; — OH; , each of which take
a meridian curve a of H; onto the specified v;. The 3-manifold M' is said to
be the result of a Dehn surgery on along the link L with surgery instructions
(2) and (3).
Example 1.1.1. Let M = R® or S3.
Let L = K, U...UK, be an oriented link of simple closed curves in R3. then
each component K; has a prefered framing for a tubular neighborhood H; in
which the longitude B; is oriented in the same way as K; and the meridian
o; has linking number £1 with K;. Therefore, we may write the curve ; in
terms of the basis:
Jolew) = piBi + iy
with ambiguity of a + depending on how one wishes to orient J;. We have
that q; = lk(K;,v;). The ambiguity disappears if we take the ratio,

i = qi/pi.

The r;’s are called surgery coefficients ossociated with the component K;. If
p; = 0 then q; = £1 and we write r; = oo.

Theorem 1.1.2. Dehn surgery with coefficients +1 on the sphere S® may be
view as the result on the boundary of attaching 2-handles to the 4-ball.

Proof. See Rolfsen pages 261. =



1.2 Cobordism

Given an oriented manifold M, we will denote by —M the manifold that
has the same underlying topological and smooth structure as M, but with
the opposite orientation. By OM, we mean the boundary of M with the
induced orientation. By M + N, we mean the disjoint union of M and N;
by M — N, we mean M U (-N). By M = N, we mean that M is isomorphic
to N as oriented manifolds. What we are studying is the equivalence relation
of cobordism:

Definition 1.2.1. Two closed orientable n-manifolds M and N are cobordant
if there exists a compact (n + 1)-manifold with boundary W such that OW =
M — N. We might sometimes write this as M ~ N.

Remark 1.2.1. This is an equivalence relation. Endeed, It is reflexive since
M — M s the boundary of M x [0,1] as Mark did in the class. It is also
symmetric: if OW = M — N, then O(—W) = N — M. Finally, we check
transitivity. Assume 0V = L — M and OW = M — N. Using the collar
neighborhood theorem1 , we can define a new manifold X by gluing together
the —M component of OV and the M component of OW. We would then
have 0X =L - N.

We can now define the oriented cobordism groups:

Definition 1.2.2. The n-th orientable cobordism group §2,, is the set of closed
n-dimensional manifolds together with the group operation + (i.e., disjoint
union), modulo the equivalence relation of cobordism.

To simplify things, we will think of the empty set @ as being an n-manifold for
every n. This allows us to set the identity element in §Q,, to be the equivalence
class of 0. Our notation suggests a natural choice: the inverse of M should
be —M . And this is indeed the case: M — M, as we already mentioned, is the
boundary of M x [0, 1], hence is cobordant to §. Note that any manifold M
is the boundary of M x [0,00). This is why we should only look at compact
manifolds, we would otherwise be studying a completely trivial theory. Since
disjoint union is commutative operation, Q, is an abelian group. Let us take
a look for law dimensional e.gn =0,1,2, and 3:

1. For n =0, a closed orientable 0-mafolds is a finite collection of signed
ponits, and that the difference in number between the positive and the
negative points determine the cobardism class of manifold. Since a
positve point and negative point is the boundary of [0, 1], then o = Z.

2. Forn =1, S' is the only closed orientable connected n-manifold, and
it is the boundary of the disk D?.
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3. For n =2, as Mark did in the class, the set of closed oreientable man-
ifolds are, the sphere, torus with one hole, two holes,... And this is the
boundaryof a 3-manifold.

4. The case n = 3 is more harder, and will be studied in the next section.

1.3 The cobordism group (3

Theorem 1.3.1. Every closed, orientable 3-manifold is the boundary of some
orientable 4-manifold.

Before to proof this theorem, we will state and proof some lemmas and
theorems which will be useful for the proof.

Definition 1.3.1. Let S be a 2-manifold and h : S — S a homeomorphism.
h is said to be a twist homeomorphism along a curve o on S if h=identity

outside an annular neighborhood of a and inside the neighborhood it looks
like:

(see figure).

—

Theorem 1.3.2. Let S be a closed orientable surface of genus g . Then
every orientation-preserving homeomorphism of S is isotopic to a product of
twist homeomorphisms along the 3g — 1 curves pictured.

(see figure) :

The proof of this theorem will be split has lemma.




Definition 1.3.2. We say that oriented simple closed curves a and 8 con-
tained in the interior of the surface S are called twist-equivalent, written
a ~ B, if ha = B for some homeomorphism h of S that is in the group
of homeomorphisms generated by all twists of S (which includes homeomor-
phisms isotopic to the identity).

Lemma 1.3.1. Let a and B oriented simple closed curves contained in the
interior of the surface S, intersect transversely at precisely one point. Then

a~f.

Proof. As shown in the pictures, the first diagram of Figures shows the
intersection point of & and 8 and also a simple closed curve ¢ that runs par-
allel to, and is slightly displaced from, 8. Similarly, d is a slightly displaced
copy of a. The second diagram shows 7a, where 7, is a twist about ¢. The
third diagram shows m7 «, where 7, is a twist about d . In this diagram
771 has a doubled-back portion, but we can moved that by a homeomor-
phism isotopic to the identity to change mmato 8. =
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Lemma 1.3.2. Let o and B oriented simple closed curves contained in the
interior of the surface S. Suppose that a and B are disjoint and that neither
separates S. Then a ~ f.

Proof. Let F be the surface by cutting S along a U 8. There is a simple
closed curve v in F' that intersects each of a and 8 transversely at one point.
Then, by the previous lemma, a ~ v and v ~ 8. Therefore a ~ 3. =

Lemma 1.3.3. Let o and 8 oriented simple closed curves contained in the
interior of the surface S, and that neither separates S. Then a ~ .
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Proof. The proof of this lemma can be done by using the two first
lemmas. For more detail see the Lickorish book pages 126-127.
]

Corollary 1.3.1. Let a;,--- ,a, be disjoint simple closed curves in the in-
terior of S the union ofwhich does not separate S. Let By,--- , B, be disjoint
simple closed curves in the interior of S the union ofwhich does not separate
S. Then there is a homeomorphism h of S that is in the group generated by
twists, so that ha; = B; .for each j=1,--- |n,

Proof. We going to show this by induction. By the previous lemma,
there is a twist homeomorphism 7; which send «; to 8;. Now, assume there
Is homeomorphism f which send a4, ,an-1 to By, , Bn~1. Again using
the previous lemma, there is a twist homeomorphism 7,, which send a,, to
Bn. This h=1,0 f.

m This complete the proof of the Lickorish theorem.

Lemma 1.3.4. Let L and L' are handlebodies of the same genus and f :
OL — OL' be any homeomorphism. Then there exist disjoint solid tori
Hi,..,H; in L and Hy,...,H, in L' such that f extends to a homeomorphism
f:L-(HU..UH)—> L - (H/u..uH).

Proof. Since L and L’ have same genus, then they are homeomorphic,
therefore we may assume L = L', and f : 0L — JL preserves orientation. We
know that any homeomorphism of L which is isotopic to the identity can
be extends to a homeomorphism of all L to it self, by moving only a collar of
the boundary. So by the the previous theorem we can write f = g4,...,gs, a
composition of twists a long some or all 3¢ — 1 curves. We have that g, is the
identity off an annular neighborhood V of its twisting curve in L. Consider
a tunnel excavated from L just under this annulus, within a collar of OL(see
figure). This tunnelis a solid torus, call it H;. The region between H, an V
is a copy of V' x [0, 1], which may be twisted by g, X id. Therefore g, can be
extends by this map, together with the identity elsewhere on L — H;. Let
call this extension gy : L — H 1 = L — Hl Similarly g» may be extended to
a homeomorphism g5 : L — Hz - L- H2
By excavated slightly deeper than before, if necessary, it can be arrange that
H, missed H — 1 and that gy is the identity on Hs. Inductively, we define in
this way a collectlon of disjoint solid torus tunnels Hj,..., H, and extensions
gi:L— H,— L-H; so that 7; is fixed on H; for ¢ < j.

Let f be the compositions f = g;...9291, restricted to L — (Hy,...,H,). The
solid tori to be deleted to get the range of f are H' = H, and H] =
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gs---gi+1(H;) for i < s. Finally we get,

&ﬁﬁ f:L-(Hiu..uH)—L-(HuU..uH).
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Lemma 1.3.5. Every closed orientable, connected 3-manifold may be ob-
tained by Surgery on a link in S*. Moreover, one may always find such a
Surgery presentation in which the Surgery coefficients are all £1 and the
individual components of the link are unknotted.

Proof. Let M be a closed, connected, orientable 3-manifold. By theorem
1.2, one can choose Heegaard decomposition of the same genus:

S=Lu;L

and
M=N Uff JV’

where f : L' — 9L f' : ON' — ON are homeomorphisms attaching the
handlebodies. Since handlebodies of the same genus are homeomorphic, let
g: L — N be a homeomorphism. We have,

h=(fY'ogof:0L — 8N’

is a homeomorphism. Therefore, by the lemma 3.1 h can be extends to a
homeomorphism

R:L'—(Hu..uH,)—> N —(H/U..uH)

=~




where the H;’s and H;’s are disjoint solid tori.
This homeomorphism extends to a homeomorphism

RSP~ (HiU..UH,) = M— (H,u..uH).

In the from of the Lemme 3.1, we have seen that b’ carries 8H; to 9H for
all 7 and that the preimage of a meridian of H] is a meridian + longitude of
H;. Thus, M is the result of a surgery of S with coefficients +1 on the solid
tori Hl, veny Hs.

]

Proof. (theorem 3.1) Without loss of generality we can assume M is con-
nected. By the Lemma 3.2 M is the result of a surgery of S® with coefficients
%1, and by the theorem 1.3 this is the result on the boundary of attaching
2-handles to the 4-ball. m

1.4 Conclusion

33 = 0. This is perhaps the nicest and most direct proof but there were
previous proofs, Rochlin, Thom.



